In this post, we take a look at this $[1]$ paper, which introduces a simple, yet interesting approach to solving a multi-vehicle path planning problem.
My implementation of the algorithm that was used to evaluate its performance and generate all the results in this post can be found here
$\newcommand{\ith}{i^{th}}$
$\newcommand{\pth}{p^{th}}$
$\newcommand{\qth}{q^{th}}$
$\newcommand{\lth}{l^{th}}$
$\newcommand{\MR}{\mathbb{R}}$
$\newcommand{\xpi}{x_{pi}}$
$\newcommand{\ypi}{y_{pi}}$
$\newcommand{\xqi}{x_{qi}}$
$\newcommand{\yqi}{y_{qi}}$
$\newcommand{\xmin}{x_{min}}$
$\newcommand{\xmax}{x_{max}}$
$\newcommand{\ymin}{y_{min}}$
$\newcommand{\ymax}{y_{max}}$
$\newcommand{\xlmin}{x_{l,min}}$
$\newcommand{\xlmax}{x_{l,max}}$
$\newcommand{\ylmin}{y_{l,min}}$
$\newcommand{\ylmax}{y_{l,max}}$
$\newcommand{\xlimin}{x_{li,min}}$
$\newcommand{\xlimax}{x_{li,max}}$
$\newcommand{\ylimin}{y_{li,min}}$
$\newcommand{\ylimax}{y_{li,max}}$
$\newcommand{\cplx}{c_{pl,x}}$
$\newcommand{\cply}{c_{pl,y}}$
$\newcommand{\dpqx}{d_{pq,x}}$
$\newcommand{\dpqy}{d_{pq,y}}$
$\newcommand{\tpli}{t_{pli}}$
$\newcommand{\spi}{s_{pi}}$
$\newcommand{\spij}{s_{pij}}$
$\newcommand{\spinext}{s_{p,i+1}}$
$\newcommand{\spn}{s_{pN}}$
$\newcommand{\spf}{s_{pf}}$
$\newcommand{\wpi}{w_{pi}}$
$\newcommand{\wpij}{w_{pij}}$
$\newcommand{\wpn}{w_{pN}}$
$\newcommand{\upi}{u_{pi}}$
$\newcommand{\upik}{u_{pik}}$
$\newcommand{\vpi}{v_{pi}}$
$\newcommand{\vpik}{v_{pik}}$
$\newcommand{\Ap}{A_{p}}$
$\newcommand{\Bp}{B_{p}}$
$\newcommand{\qp}{q_{p}}$
$\newcommand{\rp}{r_{p}}$
$\newcommand{\pp}{p_{p}}$
[Read More]